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The von Neumann – Mullins relation has been extended to
higher dimensions by MacPherson and Srolovitz. Their ex-
act solution relates the rate of volume change of an indivi-
dual grain in a 3-dimensional isotropic polycrystal to its
mean width and total length of triple lines (assuming isotro-
pic boundaries). The objective of this study is to verify that
grains in a moving finite element grain growth model obey
this law. Algorithms have been developed in order to calcu-
late mean width of individual grains in digital microstruc-
tures for which the grain structure is discretized with both
volumetric and surface meshes. Theoretical rate predictions
were obtained from the measured mean widths and triple
line lengths. Good agreement was found between growth
rates measured in the simulations and the predictions of
MacPherson – Srolovitz theory for the cases of an isolated
shrinking sphere, individual grains in a digitally generated
coarse polycrystal, and individual grains in a microstructure
reconstructed from serial sectioning of stabilized cubic zir-
conia. Departures from this relationship appeared to be re-
lated to the grain shape.
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1. Introduction

1.1. Isotropic grain growth

The enduring quest in materials science and engineering is
to improve our understanding of the relationships between
microstructure, processing and properties of materials [1].
In the case of metals and ceramics, the network of grain
boundaries defines the (typically) polycrystalline micro-
structure. It is critically important to have a quantitative un-
derstanding of how these polycrystalline microstructures
evolve. In two dimensions, the von Neumann – Mullins re-
lation predicts the rate of area change for a grain [2, 3]

based on only its topology as quantified by the number of
sides:
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In Eq. (1) above, dA/dt is rate of area change, M is grain
boundary mobility, c is the grain boundary energy and (i

is the turning angle at a triple junction. In an isotropic mate-
rial, grain boundaries meet along triple points at 1208 an-
gles and the turning angle is equal to p/3. Thus, in this 2-D
curvature driven model, shrinkage or growth is predicted
based on the number of nearest neighbors of a grain. There
have been efforts to find a similar relationship for the grain
growth dynamics in three-dimensional polycrystals. Gla-
zier analyzed individual grains in a 3D Monte Carlo model
and, in making a linear fit between growth rate and facet
number, emphasized the importance of topology [4]. Mul-
lins’ three-dimensional bubble evolution analysis [5] made
a simplifying assumption that all faces have five edges and
obtained a mildly non-linear relationship between growth
rate and the number of faces (nearest neighbors). Although
more complicated in detail, Mullins’ growth function is ap-
proximately proportional to the square root of the number
of facets. Hilgenfeldt et al. developed an analytical relation-
ship for the growth function [6] based on an assumption of
spherical caps on each facet; as in Mullins’ result, the
growth function tends towards a square root behavior at
large facet number. Glicksman developed a relationship
for average n-hedra in his capillarity driven growth study
[7]; based on this result for idealized shapes, Rios and
Glicksman go on to derive grain size distributions by as-
suming that growth rates are proportional to the square root
of the facet number [8]. MacPherson – Srolovitz have gen-
eralized the von Neumann – Mullins relationships to three
and higher dimensions [9]. According to the MacPherson –
Srolovitz relation for an isotropic polycrystal (in the sense
of uniform grain boundary energy), in three dimensions,
the rate of volume change of a grain can be calculated by
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determining the mean width and total length of triple lines.
The difference between the mean width, L, of the grain,
and one-sixth of the sum of the length of triple lines, e, pre-
dicts whether the grain will shrink or grow.
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Wang and Liu [10] also analyzed individual grain growth
rates in a Monte Carlo model and concluded that the data
could not be used to distinguish between a linear versus a
square root (of facet number) growth law. Recently Bar-
rales –Mora et al. [11] analyzed the growth rate of grains
in a vertex model. They concluded that the individual
growth rates were in good agreement with the MacPher-
son – Srolovitz theory but that the previous theories (Hil-
genfeldt, Mullins) also fit their results well. Note, however,
that they chose to emphasize the topological class by aver-
aging growth rates (within each class) and did not examine
in detail the behaviour of individual grains in their poly-
crystal simulations. Long before these contributions, Cahn
[12] derived a similar relationship for convex bodies for
which the mean width is equal to the caliper diameter (bar
a numerical factor), so it is clear that the major contribution
of MacPherson –Srolovitz is to generalize the computation
of mean curvature to non-convex objects.

1.2. Mean width of digital microstructures

The reason that the mean width is so useful in grain growth
theory is that it measures the integrated mean curvature of
an object. Stoyan et al. [13] provides a brief description of
mean width based on measure theory. The calculation of
mean width, L, can be performed using the Crofton formu-
la, where X is the object to be measured, P is a test plane
that is passed through the object in all directions, n, and v
is the Euler characteristic (or connectivity number) of the
intersection of the body with the test plane:

L ¼ 2
Z

s2

d~n
Z

R
ds v X \ P~n;s
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For a sphere with diameter d, test planes with normals par-
allel to the line direction l, will either not touch the object,
therefore resulting in a Euler characteristics of either 0, or
touch the object and result in an Euler characteristic of 1.
Thus evaluation of the integral will yield the diameter, d,
and therefore the mean width of a sphere is equal to twice
its caliper diameter based on this definition [14]. It is also
equal to the integral mean curvature of the object, divided
by 2p. For a polyhedron with flat faces and v edges, the
mean width can be calculated using Eq. (4), where e is edge
length and b is the turning angle, which is positive or nega-
tive depending on whether the object is convex or concave
along the corresponding edge respectively [9]. The notation
for angles and edge lengths is chosen in this fashion to dif-
ferentiate edges and turning angles along the flat surfaces
rather than of the case of triple lines of a grain. The mean
width of objects in digital microstructures in a surface mesh
can be calculated in this fashion.

L ¼ 1
2p

Xv

i

eibi ð4Þ

Hadwiger has shown [15] that for three-dimensional do-
mains there is one and only one measure in each of one,
two and three dimensions that satisfies the additivity law.
These unique measures (in 3D) are volume, area and mean
width. Therefore, the additivity rule can be employed to
calculate mean width in volumetric meshes. In our volu-
metric meshes, grains are constructed with tetrahedral ele-
ments and, from the additivity rule, the mean width, L, of a
grain can be calculated by adding up the individual mean
widths of its tetrahedral elements, subtracting the mean
width sum of the triangles at the intersections of tetrahedra
and adding up the mean widths of edges of the triangles that
lie within the grain.

LðGrainÞ ¼PLðTetrahedronÞ%PLðTriangleÞþPLðEdgeÞ
(5)

Thus we developed two different methods for calculating
the mean width of digital microstructures. For surface
meshes, Eq. (4) for polyhedra with flat facets was used and
for volumetric meshes, the additivity rule based on Eq. (3)
was used.

2. Experimental procedure

2.1. Digital mesh generation

In order to verify the grain growth kinetics of the model, a
test case of a spherical grain was used. This spherical grain
loses volume and interfacial area while maintaining its
shape, assuming curvature-driven boundary motion. Thus
the rate of change of interfacial area can be calculated ana-
lytically. Following the MacPherson – Srolovitz relation,
the rate of change of volume only depends on the mean
width since the structure lacks triple lines. In the first dis-
cretization of the microstructure, tetrahedral elements are
used to approximate the spherical grain; in the second type
of discretization, a triangular surface mesh is used to de-
scribe the same spherical grain volume, Fig. 1.

The digital polycrystal was generated in order to study
the growth rates of the grain network. Regular partitioning
of a unit cube into a grid of 503 cells was the first step in
creating the microstructure. At every cell corner, a node
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Fig. 1. Spherical grain embedded inside unit cube. The rate of interfa-
cial area change can be analytically solved using the curvature driven
growth relation. Following MacPherson–Srolovitz relation, the rate
of volume change is dependant on the mean width since the structure
lacks triple lines.



was placed and later linked in order to create a regular tetra-
hedral mesh consisting of 750 000 equal volume elements.
5000 tetrahedra were then randomly chosen as seeds and as-
signed with individual grain identifiers under the constraint
that two different grain centers would not fall onto neigh-
boring tetrahedra. The mesh then was subjected to isotropic
grain growth [16] until 379 grains remained, Fig. 2. Several
re-meshing steps and mesh quality operations were done
periodically in the coarsening process [17] using the Los
Alamos Grid Toolbox [18] software package.

The second polycrystal microstructure was based on the
voxelized information from a stabilized cubic zirconia
sample obtained by serial sectioning with a dual beam
FIB-SEM [19]. From the voxelized microstructure, Fig. 3a,
a surface mesh was generated using a multi-spin marching
cubes algorithm [20]. The resulting surface mesh had
1391 grains with an average of more than 1000 elements
per grain, Fig. 3b.

2.2. Simulation of grain growth

The curvature driven grain growth model is based on the in-
terface motion defined by Eq. (6), where vn denotes the
magnitude of the interface normal velocity, M the interface
mobility, and rnE is the total system energy change result-
ing from an infinitesimal normal displacement of the inter-
face at a given point.

vn ¼ MrnE ð6Þ
The moving finite element method attempts to move mesh
nodes so that the equation of motion is satisfied as well as
possible at all points on each interface. This naturally leads
to minimization of a functional that quantifies the differ-
ences between actual and desired nodal velocities, Eq. (7).

J ¼
Z

s
ðvn %MrnEÞ2 dS ð7Þ

over all possible nodal velocities. Here S implies all mobile
interfaces discretized by triangles. Additional forces on the
nodes are required so that element quality is maintained
during mesh motion, and these forces can also be expressed
as a functional. Minimization of these functionals with re-
spect to the motion of all nodes lies at the heart of the mov-
ing finite element method and the detailed derivation can be
found in [21] and Gruber’s thesis [17]. This method does
not address the need for topological changes during coar-
sening. The simulation does not use periodic boundary con-
ditions and nodes on the borders of the simulation volume
are constrained not to move.

3. Results

3.1. Spherical grain

Spherical grain shrinkage can be solved analytically under
the assumption that the normal velocity of each grain inter-
face is equal to the product of curvature, interfacial energy,
and mobility (for isotropic boundaries). From this, the rate
of change of interfacial area, dA/dt, can be calculated. The
surface area of a spherical grain, A, changes at fixed rate,
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Fig. 2. Digitally generated coarse polycrystal structure. Digitally gen-
erated polycrystal structure with 379 grains. The tetrahedral volumetric
mesh has 36007 nodes and 80581 elements.

Fig. 3. (a) Voxelized microstructure based
on the serial sectioning of zirconia by dual
beam FIB/SEM. (b) Surface mesh generated
upon the voxelized microstructure. The result-
ing microstructure has 670 424 nodes and
1426683 triangles are covering 1391 grains.



given that the velocity of the interface obeys curvature dri-
ven motion, where M is the grain boundary mobility and c
is the grain boundary energy per unit area, Eq. (8).
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¼ 8pr % 2Mc
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Furthermore the MacPherson – Srolovitz relation, Eq. (2),
shows that the rate of volume change depends only on the
mean width since the structure lacks any triple lines.
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The volumetric mesh representing the spherical grain is
shown in Fig. 1 and the plots in Fig. 4 show the grain vol-
ume and interfacial area measured over several time steps.
The total time was chosen to be small enough that the vol-
ume change in this test and in the polycrystal simulations
was less than 0.02 %. Also, M and c are set to 1 for both
cases, which means that the simulations are performed with
normalized quantities (as opposed to physical values to re-
present a particular material). For our rate comparison pur-
poses, no topological changes were needed within this sim-
ulation time, which facilitates rate comparison analysis.

Also the short time minimizes the error in applying linear re-
gression to obtain dV/dt as the slope of volume versus time.

Comparison of the slopes of the plots from Fig. 4 showed
that the simulation rates are *5 % and 4 % slower in Fig. 4a
and Fig. 4b, respectively, than the theoretical predictions.
In the case of the surface mesh, dV/dt and dA/dt measured
in simulation differs from the theoretical predictions by
3 %, because using a surface mesh eliminates the necessity
of quality forces for tetrahedral elements within the grains.

3.2. Coarse polycrystal

The mean width, L, for each grain in the coarse polycrystal,
Fig. 2, is plotted against the cube root of the initial grain
volume in Fig. 5a. The linear relationship shows that the
mean width is proportional to the sphere equivalent radius
or diameter as expected. The best-fit slope is 2.72, which
may be compared with the value of approximately 2.4814
for the sphere. Also, by measuring the edge length of the tri-
ple lines, the rate of volume change can be predicted using
the Srolovitz – MacPherson relation, Eq. (2). dV/dt values
measured for each grain over several time steps in the simu-
lations are plotted versus the predicted values in Fig. 5c.
The small departure from the 1 :1 line indicates good agree-
ment between theory and simulation. The outliers from the
linear trend are the grains whose mean widths are also
among the outliers, as shown in Fig. 5d. Since the relation-
ship between mean width and volume is a measure of shape
(just as for the more familiar area:volume ratio) this sug-
gests that departures from standard shapes are correlated
with deviations from the MacPherson – Srolovitz relation-
ship, at least in this model. This apparent importance of
grain shape motivated Fig. 5b, where we present a new
way of characterizing shape by using the basic quantities
of volume, area and mean width, i. e. the three quantities
that possess the property of additivity. The graph is of the
cube root of the volume against the square root of area, both
normalized by mean width in order to arrive at dimension-
less quantities; this is closely related to the Blaschke dia-
gram [22].

3.3. Measured microstructure of stabilized cubic zirconia

A plot of mean width versus cube root of volume for the
sample of stabilized cubic zirconia based on surface mesh
is shown before and after two methods of smoothing in
Fig. 6a. Linear regression yields fits with r-values of
0.984(initial), 0.989 (MFE) and 0.979 (CLS) respectively.
The first smoothing method uses the moving finite elements
approach (MFE smoothed), whereas the second method
uses a constrained line straightening (CLS) approach. In
the constrained line straightening method, each grain
boundary line is considered as a string of edges where the
two end nodes (typically, triple/quadruple points in space)
are fixed. Then a line is drawn from the starting node to
the midpoint of next edge. If the distance from the previous
node is less than a threshold value, then such a line is drawn
to the next edge, otherwise the grain boundary is traced
back to the previous line. Then the previous nodes are
moved to the equi-distanced points on the line and used to
connect the end point to the start point. This process is re-
peated for all lines across the boundaries and the entire se-
quence is repeated for as many iterations as are found to
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(a)

(b)

Fig. 4. Shrinking sphere case: (a) Volume change during the simula-
tion for the volumetric and surface meshes plotted against the predic-
tions from Eq. (9). (b) Interfacial area change during the simulation
for the volumetric and surface meshes plotted against the predictions
from Eq. (8). Both meshes represent an isolated (island) spherical
grain. The slopes of the plots were compared to theoretical rate predic-
tions. The result for the surface mesh is closer to the theoretical predic-
tion because using a surface mesh eliminates the necessity of quality
forces for (tetrahedral) elements inside the grains.



be needed to optimize the structure. A complete description
of the method will be detailed in a subsequent publication.

The variation in the proportionality between L and V1/3

for the stabilized cubic zirconia case shows that there is a
measurable variation in shape during smoothing. The slope

in the initial surface is 3.6, whereas the MFE smoothed
mesh has 3.09 and the CLS method results in a slope of
3.06. As mentioned above, these values can be compared
with the value of 2.481 for spheres and the value of 2.72
found for the simulated polycrystal. Figure 6b shows a plot
of growth rates (dV/dt) of individual grains measured from
moving finite element simulations of grain growth with dif-
ferent isotropic grain boundary mobilities, against the rate
predicted by the MacPherson – Srolovitz theory. To a good
approximation, the measured (reduced) mobility is propor-
tional to the mobility used in the model.

Figure 6c, d and e shows histograms of the mean width,
volume and area, respectively; note the contrast between
the obviously skewed distributions of area and volume,
compared to the approximately normal distribution of mean
width. Finally Fig. 6f shows a plot of dimensionless shape
factors calculated as the cube root of volume versus the
square root of area, both normalized by the mean width.
Note how both these ratios vary together over similar
ranges for both this experimental microstructure and the
theoretical one, Fig. 5b.

4. Discussion

The isolated shrinking spherical grain discretized with a
volumetric mesh showed that rates for interfacial area and
volume change measured in simulation follow the theoreti-
cal predictions based on curvature driven grain growth.
The rate of shrinkage, however, is slower by *5 % than
the predictions both in area and volume change. The addi-
tional forces for maintaining the mesh quality (i. e. aspect
ratios of triangle and tetrahedron elements) retard the inter-
face motion. However, when the same grain is represented
by a surface mesh, the difference between the simulation
and theoretical rates decreases to 3 % because the absence
of internal elements eliminates the necessity for additional
forces to maintain tetrahedral volume elements. Note, how-
ever, that quality forces are still required in the triangular
surface mesh in order to maintain element quality.

The coarse polycrystal results show that mean width data
for the interior grains follows the trend for sphere equiva-
lent mean width. There are several grains in the outliers of
this trend, which might be due to their distorted shapes be-
fore a topological event. The grains overall follow the theo-
retical rate predictions, except for the outliers from the
trendline of mean width versus volume.

The calculations for the measured stabilized cubic zirco-
nia microstructure showed that the constant of proportional-
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(a)

(b)

(c)

(d)

3
Fig. 5. Digital polycrystal case: (a) Mean width plotted versus the
cube root of the volume; grains that are in contact with the exterior sur-
face of the digitally generated polycrystal are excluded. (b) Plot of
cube root of volume divided by mean width against square root of area
divided by mean width. (c) Plot of growth rates (dV/dt) of individual
grains measured from a moving finite element simulation of grain
growth, against the rate predicted by the MacPherson –Srolovitz theo-
ry. (d) 3D plot of the ratio of growth rates, versus mean width and the
cube root of the volume. The mean width data is proportional to the
cube root of volume. The small departure from the 1 :1 line indicates
good agreement between theory and simulation. The outliners in the
trend are the grains whose mean widths are also among the outliers.
Some grains deviate both + and – from both the shape factor and, at
the same time, dV/dt ratio.



ity between L and V1/3 varies during smoothing. This sug-
gests that mean width, along with the more familiar volume
and surface area, can be used to quantify the degree of
smoothing. Experimental techniques offer inherently voxe-
lized structures, which require smoothing before use as a
source of data in materials science studies such as grain

boundary area as a function of boundary type and so quanti-
tative measures of the quality of the result are important. It
is important to state that the authors are not aware of any
quantitative measures for quality of surface smoothing be-
yond standard measures of element quality such as the as-
pect ratio utilized in this work.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) Mean width plotted versus cube root of the volume, for the surface mesh based on the serial section dataset for zirconia before and after
two different methods of smoothing. For comparison, the slope for the sphere is 2.481. (b) Plot of growth rates (dV/dt) of individual grains measured
from moving finite element simulations of grain growth with different mobility values, against the rate predicted by the MacPherson –Srolovitz the-
ory. (c) Mean width/(average mean width) distribution. (d) Volume/(average volume) distribution. (e) Area/(average area) distribution. (f) Shape
plot for smoothed zirconia mesh.



5. Conclusions

A moving finite element model has been used to simulate
grain growth according to curvature-driven interface mo-
tion. Both volumetric tetrahedral meshes and surface trian-
gular meshes were used to discretize microstructure; the
surface meshes discretize only the grain boundaries. The
rates of change of volume of individual grains were mea-
sured along with mean widths and triple line edge lengths.
Comparisons between the measured rates and those pre-
dicted by the MacPherson – Srolovitz theory show good
agreement. Mean width is proportional to radius computed
from the volume, as expected; variations for individual
grains are related to variations in grain shape. Smoothing a
mesh obtained from a voxelized reconstruction of a serial
sectioning of a sample of zirconia shows that the ratio of L
to V1/3 decreases as the grains become more compact during
the smoothing process. We present a new analysis of grain
shape based on ratios between the three basic quantities of
volume, area and mean width: a measured microstructure
exhibits a different variation between these ratios as com-
pared to a simulated microstructure.
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