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Abstract. During anisotropic curvature driven grain growth, high-energy grain boundaries are
preferentially eliminated, thus leading to interface texture development and a higher population of
low energy grain boundaries. However, when stress is introduced as an additional driving force, the
dynamics of grain growth change. To model these effects, a three dimensional anisotropic multi-
level set model was modified in order to account for the effect of stress field on grain growth. For
this mesoscale study, grain boundaries were treated as dislocation structures and their associated
net Burgers vectors were calculated using the misorientation information and boundary inclinations.
Using these net Burgers vectors and their associated densities, additional forces due to stress field were
calculated via the Peach-Koehler equation. Qualitative comparisons of 5 parameter grain boundary
character distribution will be carried out in order to analyze the differences in texture evolution during
grain growth.

Introduction
Materials properties and performance of polycrystalline solids are linked to the distribution of grain
boundaries. Through grain boundary engineering [1], certain populations of grain boundaries are
enhanced thus a grain boundary character distribution is favored [2]. Recent developments in three
dimensional imaging techniques and simulations have extended the five dimensional grain boundary
character distribution analysis [3]. In this analysis, grain boundary populations are specified by the
grain boundary character distribution, λ (∆g, n̂), which is the distribution of relative areas of distin-
guishable grain boundaries parameterized by their lattice misorientation (∆g) and boundary plane
orientation (n̂) [4]. Previous experimental work has demonstrated that significant texture can appear
in grain boundary character distributions and that low energy boundaries occur in these distributions
with greater frequency than higher energy boundaries [4] and [5]. Recent three dimensional grain
growth simulation with anisotropic grain boundary energy was successful in replicating the experi-
mental observations of grain boundary character distribution [6].
Stress induced grain boundary (GB) migration has been shown in small angle bicrystals [7, 8] and
also for high angle grain boundaries [9, 10]. Atomistic simulations using Molecular dynamics have
demonstrated very clearly that even high angle boundaries can move under stress driving forces, just
as if they possessed dislocation-like structures. The possibility to affect microstructural evolution
with stress opens up new engineering opportunities [11]. In view of the renewed interest in using
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stress as an additional field in grain growth, it is important to be able to predict the influence of
stress on the evolution of grain boundary character distribution. This then motivates the current work,
which computes the dislocation character of each boundary by net burgers vector analysis and uses
a multi-field level set algorithm to simulate grain coarsening with both curvature and stress driving
forces.

Dislocation Content Analysis
We follow the standard Frank-Bilby approach to calculate the dislocation structure of a general grain
boundary [12]. We assume that boundaries adopt the minimum energy configuration in well an-
nealed materials. Thus the configuration is sought that minimizes the total dislocation density of
the boundary. The standard set of six independent Burgers vectors in fcc metals are considered, i.e.
b = {a/

√
2 < 110 >}. Each set of three independent Burgers vectors is considered in turn. The

reciprocal Burgers vectors, b∗, are calculated as in the following example.

b∗1 =
b2×b3

b1 ·b2×b3
(1)

Other coefficients are obtained by permutation of the suffices. For each Burgers vector, a vector,
N, can be defined whose length is equal to the reciprocal of the dislocation spacing, dl , and that is
perpendicular to the line sense of the dislocations. The magnitude of each N represents the dislocation
density associated with that particular Burgers vector.

Ni = 2 sin(θ/2){ρ̂×b∗i − n̂(n̂ · ρ̂×b∗i )} , (2)

where the suffix on N and b∗ denotes the Burgers vector index, ρ̂ is the misorientation axis and n̂ is
the boundary normal (both unit vectors). The appropriate configuration is then that which minimizes
Σ |N|, i.e. the total dislocation density required to satisfy the geometry of the interface. To compute
the dislocation structure of each location on a given boundary, the normal and the misorientation
are provided to the procedure and the energy of all possible combinations of Burgers vectors are
calculated, which, in effect, considers all the symmetrically equivalent positions of the crystal lattices.
This calculation is repeated for each of the two lattices and the minimum energy configuration is
selected for computation of the force on the boundary.

Anisotropic Multi-Level Set Method
The level set method can be used to accurately simulate the evolution of the sharp interface between
two domains when a theoretical expression for the local velocity of this interface is known and com-
putable. The level set method was first popularized by Osher et al. [13] and is used extensively in the
fields of fluid dynamics and image analysis. Numerous books [14, 15] have been written about the
level set method. For a brief introduction to the level set method, the reader is referred to [16].
Work with the level set method is not widespread within the materials science community, although
application to second-phase particle dissolution has received some attention [17]. The lack of interest
is perhaps due to the fact that the level set method is a velocity-based formalism, and not an energy-
based approach. However, if we are to develop computational models that simulate microstructure
evolution on a truly mesoscopic scale, at lengths such that gradients in the free energy and diffuse
boundary widths are not available at runtime, sharp-interface velocity-based models would seem to
be an inevitable next step.
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Given a theoretical expression for the local boundary velocity v, the level set method advects a
scalar function φ (x) in such a way so that the contour φ (x) = 0 (which represents the boundary)
moves appropriately, via the simple PDE given by Eq. 3.

This may be implemented by a finite difference scheme on a regular grid. The mathematics com-
munity has provided a rigorous foundation for working with this equation even when φ (x) develops
discontinuities or undergoes topological transformations (see e.g. [15]).

One of the difficulties with the level set method is the need to extract explicit mesoscopic bound-
ary velocity laws as functions of mesoscopic quantities from microscopic considerations. Because
boundary normals n are obtained by simply taking gradients of the level set function φ (x), i.e.
n = grad(φ)/|grad(φ) |, the Peach-Koehler force and its associated boundary velocity may be ex-
plicitly computed as long as the misorientation is known. Therefore the level set method provides an
ideal computational model to investigate boundary motion coupled to a strain field.

We seek to model not only single boundary evolution, but also the resulting microstructural evo-
lution in a polycrystalline material. The level set method was originally developed for modeling the
motion of a single interface that decomposes space into only two separate domains namely, the re-
gion where φ (x) > 0; and the region where φ (x) < 0. Although a few authors [13, 18] have presented
multi-level set methods for modeling the evolution of grain boundaries in polycrystalline materials,
this paper is based upon a novel approach that we refer to as the interface level set method. The
principal subject of this work is the application of the interface level set method to study the affect
of microstructure evolution when boundary motion is coupled to the local strain. Therefore a much
more detailed exposition of the interface level set method will be presented in a later work. For
completeness, however, we provide here a brief description of the interface level set method.

To every grain associate the level set function φi (x). The interior of grain i will be defined as
the set of all points x such that φi (x) > φ j (x), for all other grains j. In contrast to the level set
method, which defines boundaries as the set of points x such that φ (x) = 0, we will define the grain
boundary between grains i and j as the set of points x such that φi (x) = φ j (x). To evolve the boundary
i j with a known local velocity vi j (x), we define the interface function φi j (x) = φi (x)− φ j (x), with
φi (x) > φ j (x). We then advect the contour φi j (x) = 0 according to the traditional level set equation:

∂φi j

∂ t
=−vi j ·∇φi j (3)

We note that Steinbach et al. [19] originally proposed such functions in the context of a multi-
phase field model. As Steinbach points out, there are N(N− 1) such functions φi j (x) at any point
where there are N relevant level set functions. It is thus necessary to select a subset of the functions{

φi j
}

in order to obtain evolution equations for the {φi}. We therefore consider only the evolution
equations for the interface functions φm j (x), with m defined locally by φm (x) > φ j (x) for all j. There
are (N−1) such fields and so there are (N−1) associated evolution equations, given by 3 with i = m
and 1≤ j ≤ N and j 6= m. One more equation is needed to determine evolution equations for φi. We
choose to impose the constraint

∑
i

φi = M (4)

The constant M serves as an adjustable parameter in this model and does not have any physical
significance.

We note that in regions corresponding to more than two grains, multijunctions are very well-
defined, and correspond to points at which all level set functions φi (x) are equal. It follows that
triple junctions and quad nodes are represented unambiguously in the interface level set method.
We mention in passing that equations 3 must be modified near multijunctions in order to couple
boundaries together and enforce any relevant multijunction force balance (such as Young’s law).
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(a) Diagram of a bi-crystal with a symmetric tilt
boundary, showing the expected migration direc-
tion for the boundary based on the applied shear
stress indicated

(b) Initial bi-crystal state. Red
indicates a grain interior and
blue a boundary.

(c) Bi-crystal with boundary
moving to the right under the
stress shown in (a).

Figure 1: Bi-crystal geometry used to verify the calculation of grain boundary motion under the action
of an applied shear stress.

All other issues relevant to level set models (such as initialization, reinitialization, and velocity ex-
tension) can be extended to the interface level set framework. These topics will be discussed in greater
detail in future publications. In all simulations conducted for this work, a thin-interface convective
reinitialization method was used to localize computation to a small region around the grain bound-
aries, and so boundaries appear to be diffuse. Images represent the scalar function

(
φm (x)−φ j (x)

)2.

Results & Discussion
Figure 1 shows a diagram of a symmetric bi-crystal with a particular applied shear stress and the
direction in which the boundary should move in response to this shear stress. This arrangement
is used to verify that the level set code with stress driving force correctly calculates the boundary
migration.

The first the three panels, Fig. 1(a), is the initial bi-crystal configuration; red indicates a grain
interior and blue indicates a boundary, where the color is related to the maximum value of any of the
fields. The second panel, Fig. 1(b), shows the initial state of the fields where red signifies the bulk
of a grain and blue (low) the boundary. The third panel, Fig. 1(c) shows the boundary moving to the
right. The orientations used here (Bunge Euler angles, in degrees) were (176.6 90 90) for Grain1(left)
and (93.2 90 90) for Grain2 (right).

Figure 2 shows results from simulation of grain growth in a two-dimensional polycrystal, such
as might be expected in a thin film. The simulation is, in fact, three dimensional, but the grid is
128 x 128 x 10 voxels such that the grain structure is columnar and the images are shown in the x-y
plane. The first panel 2(a) shows the initial microstructure. The second panel, Fig. 2(b), illustrates
the result of grain growth with only curvature as a driving force. The third panel, Fig. 2(c) , shows
the microstructure with stress applied in addition to curvature. The magnitude of the applied stress
was chosen so as to compete with the curvature driving forces at approximately the same level. The
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(a) Initial microstructure.
Blue indicates a grain interior
and red a boundary.

(b) Curvature driven (c) Curvature and Stress
driven

Figure 2: Comparison of curvature-only and curvature-with-stress driven grain growth in 2D

microstructures are visibly different as a consequence of adding the stress driving force.
These preliminary results demonstrate that stress as a driving force has been successfully incor-

porated into a mesoscale algorithm for simulating grain growth, in addition to the curvature driving
force. It is clear that stress changes the evolution of the grain boundary network during grain growth.
Future work will examine the effect of adding stress as a driving force on the Grain Boundary Char-
acter Distribution to find out which boundary types are favored under these circumstances.
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